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Abstract
Neuromorphic vision hardware, embedded with multiple functions, has recently emerged as a potent platform for
machine vision. To realize memory in sensor functions, reconfigurable and non-volatile manipulation of photocarriers
is highly desirable. However, previous technologies bear mechanism challenges, such as the ambiguous
optoelectronic memory mechanism and high potential barrier, resulting in a limited response speed and a high
operating voltage. Here, for the first time, we propose a critical band-to-band tunnelling (BTBT) based device that
combines sensing, integration and memory functions. The nearly infinitesimal barrier facilitates the tunnelling process,
resulting in a broadband application range (940 nm). Furthermore, the observation of dual negative differential
resistance (NDR) points confirms that the critical BTBT of photocarriers contributes to the sub-microsecond
photomemory speed. Since the photomemory speed, with no motion blur, is important for motion detection, the
critical BTBT memory is expected to enable moving target tracking and recognition, underscoring its superiority in
intelligent perception.

Introduction
The advent of machine vision has fundamentally

changed human life1–4, and proven technologies are
merging and leading the transition to Industry 4.05.
During the transition, extensive unprocessed images are
emerging, posing significant challenges to the image
processing systems6–22. In typical designs of processing
systems, the sensory units are physically separated from
memory and computing units. Visual information is first
sent to binary memory via high-power analogue-to-digital
conversion (ADC) and then processed by computing
units. A large amount of data shuffling between units
renders severe speed incongruity and the power-
consumption dilemma23–26. To efficiently address the
proliferation of visual information, approaches must be

developed to integrate module functions that can reduce
the redundant data shuffle from sensing to computing
units.
To date, much work has been devoted to integrating

multiple functions in one device and developing a data-
centric approach. Neuromorphic photonics for vision
sensing is now widely developing, including optoelec-
tronic synapse27, metasurface15,19,26, integrated photo-
nics21,28, electric memory array20, etc. Among them, a
promising solution, optoelectronic memory, has been
proposed, which can be programmed by optical stimuli
and read out by electrical operations29–32. Technologies
based on photogating and the Fowler–Nordheim tun-
nelling mechanism may be suitable. However, the
ambiguous trap energy level locations and high barrier
lead to a limited response speed and a high operating
voltage33–36.
Here, band-to-band-tunnelling (BTBT)-based optoe-

lectronic memory is realized based on black phosphorus
(BP) and indium selenium (InSe). With deliberate band
alignment, our device satisfies the critical BTBT condi-
tion, exhibiting cumulative photomemory current and a
low operating voltage. Due to the infinitesimal barrier, the
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operating wavelength of the critical BTBT memory, i.e., BP
on the InSe device, is extended to the near-infra-red region
(940 nm). In addition, the calculated dual negative differ-
ential resistance (NDR) points are consistent with the
experimental results, demonstrating the emergence of the
BTBT process. The corresponding hole memory and elec-
tron tunnelling processes are elaborated through time evo-
lution simulation results. Finally, noticing that a poor
memory speed leads to severe motion blur, we evaluate its
impact on motion detection based on a comparison. With
motion blur eliminated, the critical BTBT memory sig-
nificantly improves both moving target tracking and recog-
nition. The critical BTBT memory, embedded with sensing,
integration and memory functions, proposes a better solu-
tion for achieving a sub-microsecond photomemory speed,
showcasing superiority in intelligent perception (Fig. S1).

Results
Device structure and critical BTBT mechanisms
Figure 1a shows a schematic of the three-terminal cri-

tical BTBT memory with source and drain contacts on the
BP channel, while the InSe layer is floating and covered by
the BP channel as a gate. p++ Si serves as the back gate
(Vg). InSe is chosen as the gate because the current of
InSe-based heterojunctions is limited by the interface
carrier blocking effect29,30,37–40, increasing the RC time
constant (Supplementary Sections 3 and 4). With an
enlarged RC time constant, the memory window is
remarkably extended, as shown in Fig. 1b. The memory
window of the critical BTBT memory reaches 25 V in a
counterclockwise direction; in contrast, the memory
window of individual BP transistors is relatively narrow.
In addition, when the channel material BP is replaced with
other materials, such as WSe2 and MoTe2, with similar
bipolar characteristics to BP, the memory window is
similarly enlarged (Supplementary Section 5), demon-
strating the potential for memory applications.
However, there is a substantial difference in the pho-

toresponse behaviours of these devices. With a negative
Vg and the application of sub-microsecond level optical
stimuli in fixed intervals, only the critical BTBT memory
(BP on InSe device) anomalously generates a cumulative
and negative photocurrent and preserves it even in the
dark state, as shown in Fig. 1c, which is defined as the
photomemory current (the performances under different
Vg values and different wavelengths are shown in Sup-
plementary Section 6). Conversely, the photoresponses of
the MoTe2 on InSe and WSe2 on InSe devices are all
positive and stable with no memory characteristics. After
the exclusion of the interface defect artefact (Fig. S14),
based on the band alignment calculation, the critical
BTBT mechanism is proposed to interpret the unique
optoelectronic memory characteristics of the critical
BTBT memory. Critical BTBT satisfies the two

prerequisites for realizing InSe-based optoelectronic
memory: (1) fast photocarrier separation and (2) recom-
bination suppression. To reduce the tunnelling of equili-
brium carriers, the types of quasiparticles in the bands of
the initial and final states should be different. Take the
case of hole storage as an example. First, accelerating the
photocarrier separation through established channels is
crucial in the light state. Note that the interface-blocking
effect significantly suppressed the diffusion and drift
currents across the interface. A promising channel to
cross the interface is BTBT, which enables photo-
generated carriers to separate rapidly into adjacent
materials under an electric field. Considering the final
states to be tunnelled to (Fig. 1d, f), the valence band
maximum of the channel EvðchannelÞ should be above the
conduction band minimum of the gate EcðgateÞ, i.e.,
EvðchannelÞ>EcðgateÞ. Meanwhile, regarding the dark state, as
tunnelling is a time-reversal symmetric process, the key is
to suppress the undesired recombination caused by
reverse BTBT. In an extremely thin gate (InSe layer), the
spatial overlap between the electron tunnelling region and
the hole storage region must be minimized. Given that the
deepest tunnelling region for reverse tunnelling is mainly
determined by EvðchannelÞ � EcðgateÞ (Fig. 1e, g and Supple-
mentary Section 15), EvðchannelÞ should be slightly higher
than EcðgateÞ. Therefore, the optimal conditions to achieve
both excellent photomemory efficiency and a long
retention time should be

ΔE ¼ EvðchannelÞ � EcðgateÞ ! 0þ

which we denote as the critical BTBT condition. From the
Kelvin probe force microscopy (KPFM) characterizations
in Fig. S2, the critical BTBT condition is consistent with
the band alignment of the critical BTBT memory.

Photomemory characteristics
High-resolution scanning transmission electron micro-

scopy (STEM) confirms a clear and sharp interface at the
BP/InSe junction in Fig. 2a. With the critical BTBT con-
dition satisfied, critical BTBT memory exhibits negative
photomemory characteristics when Vg is below VNDR,
which is the gate voltage when negative differential
resistance (NDR) occurs. The holes are stored in the
valence band potential wall, which is accompanied by
negative gate voltage, rendering a non-volatile photo-
memory. While the memory characteristics are con-
strained when Vg is above VNDR, the BTBT pathway is
closed with no final states to tunnel to (Supplementary
Section 15). Thus, as long as the gate voltage is appro-
priate, the BTBT channel opens, and the infinitesimal
barrier facilitates photogenerated electron tunnelling.
Figure 2c shows that when a fixed Vg=−5 V is applied,
accompanied by laser stimuli, the negative photomemory
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current progressively varies with the multiple applied
laser stimuli. The device shows a sub-microlevel second
negative photomemory current (Supplementary Sec-
tions 9, 10). Figure 2d shows the high linearity in multiple
dimensions by fitting the formula I ¼ Pα. The extracted

values for α are close to 1, demonstrating that the pho-
tomemory current can be linearly varied by both the
power intensity and pulse width. Furthermore, as shown
in Fig. 2e and f, the device shows a broadband response to
near-infra-red rays (NIR) and a high dynamic range. The
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Fig. 1 Critical BTBT in BP on InSe devices. a Schematic diagram of the critical BTBT memory. b Transfer characteristics of the critical BTBT memory
(red line) and a BP transistor (blue line). c Negative photomemory characteristics of the critical BTBT memory in response to multiple 520 nm laser
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endurance and time stability are shown in Supplementary
Sections 11 and 12.
In contrast, when an arbitrary prerequisite of the critical

BTBT condition is violated, the photomemory current
disappears. We conducted a series of comparative
experiments with the same device structures but different
materials, the corresponding detailed discussions are

provided in Supplementary Section 7. Only the band
alignment of BP/InSe exhibits broken gap configuration;
the others demonstrate staggered gap configuration. First,
for the devices with different channel materials (InSe still
working as the gate), the drift and diffusion currents
across the interface are significantly suppressed, and the
first prerequisite of fast carrier separation is violated due
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to the lack of a BTBT channel. Unseparated electron-hole
pairs are recombined in InSe under dark states, and the
positive photoresponse is only attributed to the channel
materials, as shown in Fig. 2g. Second, for the devices with
different gate materials (BP still working as the channel),
the drift and diffusion currents are, in contrast, unignor-
able41, contrary to the second prerequisite of recombi-
nation suppression. Thus, although driven by the built-in
electric field of the PN junction, photogenerated holes
remain in the gate, leading to a negative photoresponse in
the light states; the inevitably elevated dark current pro-
hibits the photoresponse from being memorized in the
dark states. In addition, as b-AsP/InSe demonstrates
similar band alignment with BP/InSe, it also exhibits
negative photomemory current, as shown in Fig. 2g and
Supplementary Section 5. The figures-of-merits of various
optoelectronic memory devices are compared in Fig. 2e,
showing that the critical BTBT memory has an out-
standing photomemory speed and a broadband response.

Experimental observation of dual NDR points
The photoresponse of the critical BTBT memory can be

described by the transient behaviour of the quasi-Fermi
level and the temporal evolution of the BP/InSe/SiO2/Si
structure (Fig. 3a, b and Supplementary Section 13, the
fitting parameters are all illustrated in the “Method” sec-
tion). In the ultrathin InSe layer, photoexcitation induces
the quasi-Fermi level of holes to shift approximately
parallel to the valence band. Simultaneously, under the
modulation of Vg, the holes redistribute inside InSe to
reach a quasi-equilibrium, satisfying the Poisson equation.
When the quasi-Fermi level is horizontal, the hole storage
process is completed. Owing to the extremely short
moving distance (nm) and high mobility in the InSe layer,
the transition from the light injection state with a tilted
quasi-Fermi level to the horizontal storage state occurs
within 100 ps42, and prominent photomemory character-
istics are achieved. Note that the curve of the density of
holes with the photogeneration density (Fig. 3c) resembles
the ID–VD characteristics of a junction field-effect tran-
sistor (JFET); thus, the linear characteristics and accu-
mulated effect can be explained using the JFET model.
With increasing photogeneration density, the number of
holes stored under different gate voltages almost coin-
cides with the ideal linear curve until the pinch-off point,
where a JFET transitions from the linear region to the
saturation region, predicting a wide linearity range. When
the saturation region is entered, the saturation value of
hole storage is determined by the geometry of the trian-
gular potential well formed by the InSe valence band and
SiO2. The depth and width of the triangular potential well
are equal to the potential drop in and thickness of the
InSe layer, respectively, which coincide with the model of
the saturation current for a JFET. V p ¼ 2:2V can be

derived from IDS=IDSS ¼ ð1� V g=V PÞ2 for a JFET when
the energy band is horizontal, where IDS and IDSS are the
drain–source current and saturation current at zero
gate–source voltage, respectively. It is noted that the
thickness of InSe, which is related to the formation of the
triangular potential well, significantly impacts the detec-
tion limitation.
The most direct evidence of BTBT is the NDR point in

the Id–Vd curve in the horizontal direction in previous
research; however, NDR in the horizontal direction can-
not verify the detailed process in the vertical direction. In
order to figure out the electron tunnelling in the memory
process, we demonstrate the Ig–Vg hysteresis curve and
observe dual NDR points in Fig. 3d. The dual NDR points
are located at V g ¼ �1V and V g ¼ 2:2V in the forward
voltage sweeping (Fig. 3d, Supplementary Sections 14, 15).
The first NDR point represents the outflow of stored
holes, as shown in Fig. 3e. When the voltage is sweeping,
the holes are stored in the triangular potential well formed
by InSe/SiO2. In contrast, the potential well is narrowing
by decreasing Vg, resulting in a current spike due to the
excess hole outflow. As the diffusion current of holes
varies with the gate voltage V g and the density of holes Qp

in InSe, the detailed hole pouring process is demonstrated
in Fig. 3f. Under any definite equivalent mobility μ

�
p, dif-

ferent Qp values correspond to different peak positions,
indicating that the memory-induced hole outflow process
is history-dependent. The second NDR point represents
the electron BTBT process, and the peak position is
determined. When the energy band alignment reaches flat
with the gate voltage sweeping, there is a strong tunnel-
ling current at VNDR. When the gate voltage crosses over
VNDR, the current decreases sharply for no final states to
tunnel to, as shown in Fig. 3g, which is also consistent
with the large PVR (peak valley ratio) in Fig. 3d. Similarly,
the detailed electron tunnelling process is demonstrated
in Fig. 3h, showing that the BTBT-induced NDR matches
the experimental peak position of the NDR in Fig. 3d at
V g ¼ 2:2V.

Moving target tracking and recognition
A motion process can be regarded as image streaming

across different frames, which can be memorized in
optoelectronic memory devices. When combined with an
interframe algorithm, the movement trajectory is exclu-
sively defined35,43. The critical BTBT memory, with pho-
tomemory characteristics, exhibits the potential for motion
detection. The optical characterization of critical BTBT
memory is shown in Supplementary Section 16. The
absorption and quantum efficiency are decisive factors in
the application scope of the demonstrated device. Although
the infinitesimal barrier facilitates the tunnelling process
and exhibits high quantum efficiency, the limitation in
absorption still requires further improvement.
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Figure 4a shows a schematic diagram of reflective image
scanning in a proof-of-concept demonstration. A custo-
mized letter “I”-shaped metal pattern on a movable plat-
form is utilized to simulate the moving target across
frames (the schematic diagram of the imaging system is
shown in Supplementary Section 17). The experimental

imaging results in Fig. 4c–e show that even with a short
exposure time, the information of the different frames is
precisely memorized by our device and remains stable
until the readout process. Figure 4f, based on the simu-
lation results, presents the visualized results comparing
the tracking ability of the critical BTBT memory and

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Photogeneration density (×1015)

D
en

si
ty

 o
f H

ol
e 

(×
10

15
 m

–2
)

D
en

si
ty

 o
f h

ol
es

 (
m

–2
)

D
en

si
ty

 o
f e

le
ct

ro
ns

 (
m

–2
)

–1 V 

–2 V 

 –3 V 

–4 V 

 –5 V 
Lin. Region

Ev(InSe)
Sat. Region

0 2 4 6 8 10 12 14

–1.2
–1.0
–0.8
–0.6
–0.4
–0.2
0.0
0.2

E
ne

rg
y 

ba
nd

 (
eV

) 0.4
0.6
0.8

Ec
Ev
Efp @ ton + 0 ps

Efp @ ton + 1 ps

Efp @ ton + 10 ps

Efp @ton + 50 ps 

Efp @ ton + 100 ps

Position (�m)

Photogeneration

Hole storage

BP InSe

a b c

d

e f

0 2 4 6 8 10 12 14

–1.2
–1.0
–0.8
–0.6
–0.4
–0.2
0.0
0.2
0.4
0.6
0.8

Position (�m)

Ec
Ev

BP InSe

Equalized

–20 –10 0 10 20
0

1

Peak positions
match

hole pouring
Vhp = –1 V

–20 –10 0 10 20
–0.10

–0.05

0.00

0.05

0.10

0.15

0.20

PVR > 10

Vg (V)

NDR (BTBT)

NDR (hole outflow)

Voltage Sweep

Fitting V0 = 2.22 V

g
h

No final states to 
tunnel to

BP

InSe

BTBT process of electrons

NDR (electron BTBT)

--Strong tunnelling 
current under 

flat energy band

(V = VNDR)

--

BP

Traingular potential well 
is narrowing by Vg

InSe

Memory process of holes

NDR (hole outflow)

+

The outflow of 
excess holes

++

+

+++

++
+

–20 –10 0 10 20
–1

1

Peak positions
match

E
ne

rg
y 

ba
nd

 (
eV

)

Efp @ toff + �

Efp @ toff

Efp @ toff + 10 s

Efp @ toff + 200 ps

Efp @ toff + 20 ps

Ev(InSe)

I g
 (

nA
)

1015

1012

1011

1010

1013

1014

1015

1012

1011

1010

1013

1014

Vg (V)

dQ
p /dV

g (a.u.)

Vg (V)

BTBT
Vp = 2.2V

dQ
n /dV

g (a.u.)

Fig. 3 Photomemory characteristics and dual NDR mechanism analysis of the critical BTBT memory. a and b Transient behaviour of the hole
quasi-Fermi levels near the rising and falling edges of a signal light pulse injected into the InSe/BP heterojunction energy bands. The signal light
pulse is a square wave with a duration of 0.1 ns. The times of the rising and falling edges of the pulse are ton and toff = ton+ 0.1 ns, respectively.
c Linear and saturation behaviour of the number density of stored holes in InSe with absorbed photogeneration density at toff+ 4 ms under different
gate voltages Vg from −1 to −5 V. The signal light pulse is a square wave with a 1 ns duration. The dashed curve is the boundary between the linear
and saturated regions. The dashed-dotted line shows the ideal curve when all the photogenerated holes are stored. d Experimental results show dual
NDR in the hysteresis curve of the gate current when the gate voltage is swept from −20 to 20 V (red curve) and back (grey). The positive direction of
the hysteresis current is defined as the direction from InSe to BP. The dashed line shows the flat band condition extracted from the saturation
behaviour in (c). e The outflow of excess holes due to the decreasing potential well, resulting in an NDR in the hysteresis curves. f Calculated
distribution of hole flow dQh=dV with gate voltage Vg and the total number of holes Qh in InSe. g The tunnelling current is strongest when the
energy band alignment is flat and decreases sharply when crossing over VNDR. h Calculated electron BTBT flow dQe=dV with gate voltage Vg and the
total number of electrons Qe in InSe. Blue dots are time-dependent simulation results of the variation in Qh and Qe, with the gate voltage Vg showing
hole outflow near Vhp=−1 V and electron BTBT near VBTBT= 2.2 V, respectively. Purple lines are the hole outflow current Ihp ¼ ðdQh=dVÞðdV=dtÞ
and electron BTBT current IBTBT ¼ ðdQe=dVÞðdV=dtÞ. The time-dependent simulation results show that the positions of the peaks of the hole outflow
current and BTBT current coincide with the two NDR peaks in (d)
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reported optoelectronic memory devices. The limited
photomemory speed is set to 10ms for comparison. To
track the moving target, the feature points of frames at t0
are supposed to be detected by a Harris corner detector
(Supplementary Section 18) and matched by optical flow
across frames sequentially. For optoelectronic memory
devices with a low memory speed, motion blur renders
matching of feature points across frames difficult (only 1
feature point is matched). In contrast, for the critical
BTBT memory, the clear and sharp profile contributes to
the precise matching of 17 feature points, and the
movement trajectory is exclusively distinguished. In
addition, Fig. 4g presents the quantified results of the
photomemory speed impact on motion blur. With a
limited memory speed, the imaging results of the optoe-
lectronic memory devices demonstrate varying degrees of
motion blur. In contrast, for the proof-of-concept fabri-
cated critical BTBT memory array, the 100 μs photo-
memory speed and exposure time guarantee a clear, sharp
profile with motion blur eliminated. Figure 4h intuitively
quantifies the influence of motion blur on the recognition
accuracy of neural networks. At the 100th training epoch,
the accuracy of our device-based neural network exceeds
that of the optoelectronic memory-based neural network
by more than 16% and finally stabilizes at 91.5%, proving a
reliable motion recognition ability.

Discussion
In conclusion, we have demonstrated a critical BTBT-

based device with photomemory characteristics and a
nearly infinitesimal barrier; under the elaborately
designed triangular tunnelling region, recombination is
suppressed, which leads to a sub-microsecond level
response speed and non-volatile memory characteristics.
The critical BTBT memory exhibits highly linear and NIR
photomemory characteristics to cope with complex and
dynamic environments. Furthermore, the dual NDR
points observed in the hysteresis curve elucidate the

memory and BTBT process, and the theoretical results are
consistent with the experimental results. Finally, the
comparison between the critical BTBT memory and
optoelectronic memory also demonstrates that the pho-
tomemory speed (or exposure time) remarkably impacts
the moving target tracking and recognition ability. In
addition, considering future practical applications, while
critical BTBT memory accelerates image processing, it
also imposes higher demands on array uniformity. Sig-
nificant device-to-device variability can degrade the
accuracy of tracking and recognition. Therefore, reducing
defective states and non-uniformities introduced during
material growth and chip processing will be crucial for
future research.

Materials and methods
Device fabrication
2D thin films are obtained by mechanical exfoliation

from bulk materials supplied by HQ Graphene. A dry
fixed-point transfer technology is utilized to transfer BP
flakes onto InSe flakes. The substrate consists of highly
p-doped silicon and 285 nm SiO2. The electrode patterns
are fabricated by standard electron-beam photo-
lithography (EBL). Then, after the thermal evaporation
and lift-off processes, the source and drain electrodes,
consisting of Cr/Au (10/30 nm), are deposited. After
annealing in a nitrogen environment, the device is suc-
cessfully fabricated.

Characterization and measurements
A Keysight B1500A is utilized to measure the electronic

characteristics of a Lake Shore probe station. All the
operating environments are under a high vacuum (lower
than 1 × 10−3 Pa). Additionally, because both water and
oxygen are involved in the degradation of BP, thus
extending the oxidation area, double dehumidifiers are in
operation during the whole experiment to maintain a dry
environment. Laser pulses of 633, 830, and 940 nm are

(see figure on previous page)
Fig. 4 Comparison between the critical BTBT memory and reported optoelectronic memories in terms of proof-of-concept moving target
tracking and recognition. a Reflective imaging using the customized “I”-shaped metal pattern, which can move in the 2D plane for image scanning.
The laser pulse is 520 nm with a 200 μs duration. b The red arrow penetrates the same feature point across frames, representing its temporal
movement. c–e Photocurrent mapping data scanned at different frames. p represents the same point of the customized “I”-shaped metal pattern,
and the red dashed line contains feature point p and its neighbouring pixels. The feature point p, has the same movement trajectory as the whole,
and target tracking is simplified to tracking the same points across frames, which is the basis of optical flow. f Double sets of moving trolley datasets
obtained by the critical BTBT memory and other optoelectronic memories with an exposure time of 10 ms. The feature points in the two sets of time
series images are detected by Harris corner detection and matched through the optical flow method. g The motion blur ratio is defined as the
distance covered by the moving target during the exposure time divided by the length of the moving target. Relationship between the motion blur
ratio and exposure time (also photomemory speed); different curves represent different trolley speeds. Motion blur exists when the exposure time is
10 ms, while almost no motion blur exists at 100 μs. Inset image: SEM view of the 4 × 4 critical BTBT memory and corresponding photomemory
current in response to a 520 nm laser with different pulse widths, with red columns for 50 μs and blue for 100 μs. The solid lines are the results of
fitting via a normal distribution. The preparation of arrays is shown in Supplementary Section 19. h The comparison of the accuracy between different
neural networks, in which the training database is constructed by the critical BTBT memory and optoelectronic memories. Inset image: Loss function
of the critical BTBT memory-based neural network and optoelectronic memory-based neural network
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obtained with an ITC4001 Benchtop Laser Diode (Thor
Labs). Sub-microsecond light pulses are first generated by
a Rigol DG 5071 in the form of a digital electrical signal.
Then, this signal controls a Coherent OBIS to generate
520 nm laser pulses. The laser performance is calibrated
by a commercial Si-based photodetector, and the output
signal is captured by a Tektronix MDO34 oscilloscope.
The laser pulse is directed at the device via a reflective
optical path. The device is located at the centre of the
laser spot. Considering the protective layer doping
effect44, there is no protective layer. In contrast, the
operating environment is taken seriously to avoid degra-
dation. The critical BTBT memory is preserved in a
nitrogen glove box with low water and oxygen contents
(both below 0.01 ppm). The long-term stability demon-
stration is shown in Supplementary Section 11.

Imaging system and analysis
The customized “I”-shaped metal pattern is sequentially

fabricated by EBL, thermal evaporation and lift-off pro-
cesses, and Cr/Au (5/25 nm) is deposited onto the SiO2/Si
substrate. The “I”-shaped pattern is placed on a mobile
platform as a moving target. A 633 nm laser with a 200 μs
pulse width is focused on the surface of the “I”-shaped
pattern through an objective lens. After being reflected,
the laser pulse irradiates the critical BTBT memory
through an optical pathway consisting of an objective lens,
a half mirror and a focusing lens. Finally, an Agilent
2902A semiconductor parameter analyser is utilized to
perform time-dependent photocurrent measurements,
and the current is read out after 0.5 s of optical stimulus.
In this active, reflective imaging system, the scanning
imaging principle is based on the different reflections of
various substrates (Au and SiO2/Si substrates), resulting
in different laser intensities. Through the negative pho-
tomemory current of the device at different positions, the
shape of the moving target (“I”-shaped pattern) can be
reconstructed.

Numerical simulation of the photomemory performance
and dual NDR
We adopt COMSOL Multiphysics to perform the finite

element method (FEM) simulation of the energy band
profile and temporal evolution of the BP/InSe/SiO2/Si
structure. The material properties of SiO2 and Si are taken
from the material library. The bandgaps29, affinities29,
electron and hole mobilities34,45–47, electron and hole
masses48,49, and dielectric constants50,51 of BP and InSe
are taken from published articles and our KPFM mea-
surement results (Fig. S4). The solution process includes a
semiconductor equilibrium step solving only Poisson’s
equation, a semiconductor stationary step, and a series of
time-dependent steps with iteration parameters finely
optimized. BTBT between the valence band of BP and the

conduction band of InSe is realized by a customized
generation and recombination process, with the explicit
form of the current given in Supplementary Section 15.
The calculations of the hole outflow current and BTBT
current are based on Supplementary Section 14 and are
performed using custom scripts written in MathWorks
MATLAB. A MATLAB implementation of the
Runge–Kutta method is adopted to perform the time-
dependent simulation of the density of holes and electrons
and the two corresponding NDR points in the hysteresis
curve.
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